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The Discrete Fourier Transform and FFT Analysers

by

N. Thrane, Ph. D.

ABSTRACT

The FFT approach to frequency analysis is in principle completely different from that of an-
alog or digital filters. In FFT analysers multiplication is performed between the input signal
and a weighting function in the time domain, while a filtration of the signal involves convolu-
tion between the input signal and the impulse response of the filter in the time domain.

The article discusses in detail the assumptions on which the FFT analysis is based and their
effects, however in a very pictorial and non-mathematical way. It also shows how these ef-
fects can be avoided or diminished by use of anti-aliasing filters and proper selection of the
time weighting function.

SOMMAIRE

La transformation de Fourier rapide (FFT) est une approche de I'analyse de fréquence totale-
ment différente du filtrage numérique. Dans les analyseurs FFT on effectue une multiplica-
tion dans le domaine temps du signal d’entrée par une fonction de pondération, alors que le
filtrage du signal demande une convolution dans le domaine temps du signal d’'entrée par la
réponse impulsionnelle du filtre.

Cet article discute en détails des hypothéses sur lesquelles est basée I'analyse FFT et leurs
effets, mais d'une fagon imagée et non pas mathématique. On montre également comment
ces effets peuvent étre éliminés ou diminués en utilisant des filtres anti-repliement et en
choisissant de facon adéquate la fonction de pondération temporelle.

ZUSAMMENFASSUNG

Die schnelle Fouriertransformation (FFT) bewdltigt die Frequenzanalyse nach einem vollkom-
men anderen Prinzip als analoge oder digitale Filter. Wahrend FFT-Analysatoren eine Multi-
plikation in der Zeitdomane zwischen dem Eingangssignal und einer Zeitbewertungsfunktion
durchfihren, fiihrt das Filterprinzip eine Faltung in der Zeitdomane zwischen dem Eingangs-
signal und der Impulsantwort des Filters mit sich.



In diesem Artikel werden an Hand von vielen Bildern und mit wenig Mathematik die Voraus-
setzungen auf denen FFT basiert, sowie auch ihre Effekte detailiert diskutiert. AuRerdem
wird gezeigt, wie sich diese Effekte durch Verwendung von Antialiasing-Filtern und Wahl ge-
eigneter Zeitbewertungsfunktionen vermieden bzw. unterdriicken lassen.

Introduction

Modern digital FFT analysers work on the principle of a fast and effi-
cient calculation of the so-called Discrete Fourier Transform. This spe-
cial version of the Fourier integrals is discrete, i.e. sampled, in both
time and frequency domain and hence lends itself to a direct calcula-
tion in a digital processor.

It is important to realise that the Discrete transform handles the time
signal in a way quite different from that found in more traditional analy-
sis. When a frequency analysis is performed by use of filters, analog or
digital, there is a steady flow of time data into the filter, which in turn
produces a steady flow of filtered time data at the output. In this way
the time signal is continuously being processed.

The Discrete transform, on the other hand, processes the time signal in
blocks of data. Samples of the time signal are stored in a digital me-
mory, and when this is filled up, the whole memory is transformed into
the frequency domain as one block. Furthermore, in order to obtain dis-
crete frequency components, it is assumed that this block represents
one period of a periodic signal. Actually, this is very similar to the way
a Time Compression Analyser works. There a digital memory is repetit-
ively played back, producing a periodic signal, which is then analysed
by use of a sweeping filter.

It is therefore a common property of Time Compression and FFT analys-
ers that they work only on a small part of the time signal, and treat this
as part of a periodic signal. Hence, the original input signal has been
“time limited”” before the analysis. This time limitation has important
consequences on the result of the analysis and may lead to some unex-
pected, and even peculiar, effects. Although these effects can also be
observed with time compression analysers, they are even more pro-
nounced with an FFT analyser. In the following discussions we shall
therefore concentrate on the way this time limitation is performed, i.e.
the use of different time weighting functions, and also explain the var-
ious effects graphically instead of mathematically.

The following discussions will be very brief and qualitative. For a more
quantitative discussion of the Fourier Transform, and especially sub-
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jects like complex notation, sampling and convolution theorems, the
reader is referred to references [1] to [3] given at the end of the arti-
cle. A general discussion of the advantages of digital analysis over an-
alog analysis can be found in reference [4] and therefore will not be
dealt with here.

The Fourier Transform
Before discussing the Discrete Fourier Transform in detail it will be use-
ful to discuss the various transforms shown in Fig.1.

Firstly, in Fig.1a we have the Integral transform, which transforms a
continuous time signal extending over all time, —~ <t < +%, into a con-
tinuous frequency spectrum also extending over all frequencies, —= < f
< +=_ It can be said that this is the ideal transform, which in principle
could be applied to all practical signals. However, since it requires
knowledge of all of the time signal it can in practice only be applied to
relatively short transient signals while ““continuous’ signals must be
handled by other means.

Secondly, in Fig.1b we have the well-known Fourier Series, which ap-
ply to periodic time signals. Hence, only one period of the time signal
has to be specified and included in the transform. In this case we find
that a periodic and continuous time signal is transformed into a dis-
crete frequency spectrum, exhibiting all the harmonic frequencies.

Thirdly, in Fig.1c we find the transform which applies to sampled time
signals. This is actually exactly the opposite situation of Fig.1b. Here
the discrete samples of the time domain are transformed into a periodic-
ity. of the frequency spectrum, thus demonstrating the basic symmetry
of the Fourier transform between time and frequency. A periodicity in
one domain corresponds to discrete samples in the other domain. It is
of interest to note how the sampling of the time signal leads to aliasing
of frequencies. Due to the symmetry and periodicity of the frequency
spectrum a component of frequency f. in the continuous signal will ap-
pear in the sampled signal at frequencies fy = nfs * f., where fs is the
sampling frequency and n = O, 1, +2..... In order to avoid ambiguities
about the frequency content of the continuous signal it is therefore ne-
cessary to band-limit the input signal to frequencies less than half the
sampling frequency. This is actually the content of the sampling the-
orem. If the input signal itself is not band-limited as prescribed, it
should be passed through a low-pass antialiasing filter before being
sampled.
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Fig. 1.

Various forms of the Fourier Transform
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In Fig.2 is shown the result of an FFT analysis* of a triangular time sig-
nal, which contains odd harmonics far above the sampling frequency.
The frequency range shown corresponds to =0,4 fs. The correct analysis
is obtained when the signal has been passed through an antialiasing fil-
ter with a cut-off frequency of 0,4 fs prior to the sampling. The same
signal was also analysed without using the antialiasing filter, clearly
showing the higher harmonics appearing at their alias-frequencies fall-
ing within the analysis range.

The Discrete Fourier Transform

In Fig.1d we have finally the Discrete Fourier Transform, which applies
to a discrete and periodic time signal. Accordingly, the frequency spec-
trum must also be periodic and discrete. Due to the periodicity in both
time and frequency domain only a finite number of samples are in-
volved in the transform, and therefore this particular transform can be
calculated directly by digital means. Actually, if one period of the time
signal is described by N samples, the frequency spectrum will also con-
tain N samples per period. However, due to the symmetry of the fre-
quency spectrum (which is the case for all real time signals) only N/2
of the frequency samples will be independent. In addition, the use of
an antialiasing filter with a cut-off frequency below fs/2 will reduce
the number of valid frequency components further. Typically, a time sig-
nal having 1024 samples will allow for the calculation of a 400 line fre-
quency spectrum.

To help better understanding of the Discrete transform it will be derived
qualitatively and pictorially from the integral transform. This is shown
in Fig.3, and involves three steps: 1) Time sampling, 2) Time limitation,
and 3) Time convolution or frequency sampling. These steps are not per-
formed in an FFT analyser but serve only to clarify the differences be-
tween the integral and the discrete transforms.

* The photos shown in Fig.2 and in the following illustrations were obtained directly from
the display of an FFT analyser. The Briel & Kjeer Narrow Band Analyser Type 2031 was
used. In all cases the frequency range was O — 10kHz, corresponding to a sampling fre-
quency of 25,6 kHz. The horizontal frequency axis is linear, while the vertical amplitude
axis is logarithmic, covering a range of 80dB. The frequency spectrum (RMS power spec-
trum) is shown as 400 lines with a separation of 25 Hz. The sampled time signals used
for the analysis are also displayed. Here, both amplitude and time axis are linear. The
1024 time samples in this case represent 40 ms of the input signal.Note, that in Fig.2a
only part of the time signal is displayed.
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Fig.3. Derivation of the Discrete Fourier Transform from the Integral
Transform

1) Time sampling
The continuous time signal and its frequency spectrum obtained using
the Integral Transform are shown in Fig.3a. The time signal is sampled
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by multiplying it with the sampling function of Fig.3b. This function con-
sists of an infinite series of impulses with a separation of At. The Fou-
rier transform of the sampling function is another series of impulses
with a separation of fg = 1/At. According to the convolution theorem,
multiplication of the two time signals will correspond to a convolution
of their respective frequency spectra. The results are shown in Fig.3c,
where the periodicity of the frequency spectrum corresponding to the
sampled time signal can be recognised. Hence, the time sampling gives
rise to the possibility of aliasing of frequencies. However, it can be
avoided by the correct use of an antialiasing filter, as discussed above.

2) Time limitation

In order to limit the number of samples in the time function the sam-
pled time signal (Fig.3c) is multiplied by a time weighting function or
time window. This is shown in Fig.3d as a rectangular signal of length
T. The Fourier transform of this time window is the well-known sinx/x
function also shown. The result of the time window multiplication is
given in Fig.3e, where the number of samples, N, in the time limited
signal is given by N = T/At. In the frequency domain the time window
multiplication is again reflected as a convolution of the two frequency
spectra, introducing ripples into the frequency spectrum. If the original
time signal had included discrete frequency components, these would
now have been replaced by a sinx/x function. Hence, the sinx/x func-
tion actually determines the filter characteristic of the analysis, giving
rise to a leakage of power from its original frequency into the neigh-
bouring frequencies. This effect of the time limitation is often named
ripples, sidelobes or leakage, and is basically determined by the Fourier
transform of the time window used. In the case of a rectangular time
window the filter characteristic (sinx/x) will have a very poor selectivity
and limit the useful dynamic range to less than 40 dB. However, since
the high levels of the sidelobes of the sinx/x are determined by the dis-
continuities of the rectangular time window, the use of a continuous
and smooth time window, e.g. the Hanning window,* will diminish this
effect. Since only samples of the filter characteristics are actually mea-
sured with an FFT analyser, a more detailed discussion of this effect
will be dealt with later.

3) Time convolution
The time signal shown in Fig.3e can be used for a digital calculation.

* The Hanning window consists of one period of a cosine signal of length T, displaced so
that it starts and stops at zero, see Fig.4.
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However, the corresponding frequency spectrum, being continuous,
cannot be calculated. What is required is a sampling of the frequency
spectrum which can be achieved, as shown previously, by multiplying
with a sampling function in the frequency domain. The sampling func-
tion is shown in Fig.3f where the impulses are separated by Af = 1/T,
corresponding to N samples within one period of the frequency spec-
trum (fs/Af = fs x T = T/At =N). In the time domain the frequency sam-
pling corresponds to a convolution of the time limited signal with im-
pulses of a separation of T. Hence, the effect of this is to produce a peri-
odic time signal with the time limited part as one period. The final re-
sult — The Discrete Fourier Transform — is shown in Fig.3g.

Sampling in the frequency domain is associated with the so-called
“Picket-fence effect””. Since we do not take the full continuous spec-
trum into account, but only samples of it, this corresponds to observing
the spectrum through a picket-fence. If there are very peaked compo-
nents in the spectrum we might not observe the correct maximum
value, but only the lower values on the slopes of the peak. This is by no
means a new effect. It is found whenever discrete filters are used for
frequency analysis, e.g. also with 1/3 octave filters. The amplitude er-
rors which occur depend on the amount of overlap between adjacent fil-
ters. In the case of an FFT analyser using the rectangular time window
the error will be less than 3,9 dB. However, using the smoother Han-
ning window the error is reduced to a maximum of 1,4dB. Since the
smooth Hanning window has an effective length shorter than the rec-
tangular window, the bandwidth of its Fourier transform will be wider
than that of the sinx/x function, and hence give a better overlap of the
filter characteristics. Thus the Hanning window will compensate both
for the sidelobe effect and for the picket-fence effect.

It should be noted that the Discrete transform produces frequency data
corresponding to filters of constant absolute bandwidth equidistantly
placed along a linear frequency axis. Furthermore, the data represents
the maximum information which can be obtained from a time signal of
length T, i.e. the BT product is unity.

When the discrete transform is used in an FFT analyser, the continuous
time signal is sampled and time limited, as shown in Fig.3, using an ap-
propriate time window. However, it is important to note that when the
N samples are stored in the digital memory, no recirculation of this me-
mory is performed in order to produce a periodic signal. It is an assump-
tion of the discrete transform that the N samples used for the mathe-
matical calculations describe one period of a fictitious periodic signal.
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How well the frequency spectrum of this fictitious signal corresponds
with that of the original continuous signal all depends on the approxi-
mations involved, i.e on the aliasing of frequencies, the sidelobe effect
and the picket-fence effect.

Time Weighting Functions

The effect of time limiting the signal on its frequency spectrum will
now be discussed, i.e. the use of the different time weighting func-
tions. In this discussion only the two most important functions will be
considered: the rectangular, or flat, window and the smooth Hanning
window. Although other weighting functions exist we shall not lose in
generality by this restriction.

In Fig.4 are shown the filter characteristics of the two window func-
tions, i.e. the numerical value of their Fourier transforms. The main fea-
tures of the filter characteristics are summarised in Table 1. It is clearly
seen that the Hanning window gives a characteristic with much better
selectivity than the flat window. Not only is the highest sidelobe nearly
20dB lower in amplitude but also the rate of fall of the sidelobes is
much higher. In practice the Hanning window will therefore permit the
use of a much higher dynamic range. However, the price to be paid for
these advantages is in terms of an increased bandwidth. As mentioned
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Fig. 4. Comparison of the spectra (filter characteristics) of the rectan-
gular and the Hanning time weighting functions
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Name Noise bandwidth Highest sidelobe Sidelobe fall-off
rate
Flat 1 x Af —-13dB 20 dB/decade
Hanning 1,6 x Af —-32dB 60 dB/decade
Af = 1/T = line separation in sampled spectra

790107
Table 1 Comparison of window functions

earlier, this actually reduces the picket-fence effect to a more accept-
able level, and could therefore be regarded as an advantage too. When
measuring power spectral densities it is necessary to divide the power
spectrum with the filter bandwidth, and one will therefore find a differ-
ence of a factor of 1,5 (1,76 dB) between measurements performed
with the flat and the Hanning window. The peak amplitude of the Han-
ning window is often chosen as 2. In this way sinusoidal signals will
give the same peak amplitude independent of the weighting function.

It is interesting to study the effect of time limitation on the simple exam-
ple of a sinusoidal signal. This is demonstrated in Fig.5. According to
the Integral Fourier Transform the spectrum of such a tone burst con-
sists of two sinx/x functions, situated at the positive and negative fre-
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Fig.5. Frequency spectrum of a time limited sinusoidal time signal
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quencies of the original sinusoid. Although it can be said that in prac-
tice we only measure the positive frequency part of this spectrum, it
should be noted that the sidelobes of the ""negative’’ sinx/x actually
penetrate into the positive part and interfere with the “positive” side-
lobes. This interference between the two sidelobe patterns is rather
complicated and will depend on both phase and frequency of the sinu-
soid. We shall discuss this effect later in terms of discontinuities.

However, when we use the discrete transform we do not observe the
continuous spectrum of Fig.5 but only samples of it. This is shown in
Fig.6a and b. When the time limited signal contains exactly an integer
number of periods the frequency samples will be taken in the centre of
the mainlobe and in all the zero’s between the sidelobes. Hence, we
measure the true peak value of the spectrum — no picket-fence effect
on the amplitude. Nevertheless, this example might be the best illustra-
tion of the picket-fence effect. The sidelobes - they are there - but be-
hind the pickets. What we can see through the fence is just the zeros.

Continuous ! \

[
spectrum "—\,
J

(a) T N : Sampled spectrum
'
! ! 1
! '

(sidelobes sampled at zero points)

Frequency

Sampled spectrum

(sidelobes sampled at maxima)

(b)

Frequency

780706

Fig.6. Frequency sampling of the continuous spectrum of a time li-
mited sinusoid. Number of periods within the time window: a)
integer, b) half-integer
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This is indeed a very special situation. In the more general case where
the time limited signal contains a non-integer number of periods, sam-
ples will be taken within the sidelobes and their presence will appear in
the analysis. In Fig.6b this situation is shown for a half-integer number
of periods within the time window. Now the sidelobes are sampled at
their maxima, and the mainlobe contains two samples of equal magni-
tude, but both lower than the peak value. In this situation the picket-
fence effect causes the maximum error in amplitude determination.

We shall now discuss this effect with real analysis examples, as shown
in Fig.7. We first consider the situation of an integer number of peri-
ods, Fig.7a. Using the flat weighting we obtain the ideal spectrum hav-
ing only one line at the original frequency, while the use of Hanning
weighting results in three lines, indicating the broader bandwidth of
the Hanning window. This is the situation of Fig.6a. These results are
easily understood if we remember that the signal being analysed in an
FFT analyser is not the signal in the memory but this signal repeated in
all time, as a periodic signal. In this particular example, where we have
an integer number of periods in the memory, the repetition of the sig-
nal will produce a perfect infinite sinusoid, from which any trace of the
time limitation has disappeared. Hence, the perfect line spectrum,
when we use the flat weighting. However, when the Hanning window
is used, the modulation of the perfect sinusoid causes a change of the
spectrum. Notice that the peak amplitudes are the same in the two
cases.

Now, the examples with a half integer number of periods in the time
window. Fig.7b shows a situation where the phase has been chosen so
that the signal starts and stops at zero. When this signal is repeated in
time we do not obtain a perfect sinusoid. Although the signal is continu-
ous at the joints there is a change in slope. Furthermore, the signal
will have a DC-component. Accordingly, the frequency spectrum ob-
tained using the flat weighting now shows the samples within the side-
lobes, as in Fig.6b. At low frequencies (DC) we find high amplitudes,
while at high frequencies the amplitudes are relatively low, due to the
continuity of the time signal. Also notice the picket-fence effect which
has reduced the maximum amplitude by 3,9dB. When the Hanning
weighting is applied, the modulated signal will be zero and have zero
slope at the joints and very low DC-level. This is also seen from the fre-
quency spectrum, which clearly shows the improved filter characteristic
of the Hanning window, and the reduced amplitude error of only
1,5dB.
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In Fig.7c the same signal has been analysed, but with a different
phase. The frequency is the same as in Fig.7b. When this signal is re-
peated in time we will find a maximum discontinuity at the joints, but
now the signal will not have a DC-component. This is also shown in
the analysis with the flat weighting. At low frequencies we find low am-
plitudes - no DC-component - while at high frequencies the discontinu-
ity at the joints is responsible for the high amplitudes found here.
Again, using the Hanning window the modulated signal will not be
much different from that of Fig.7b and the analysis gives essentially
the same result.

In conclusion it can be said that the purpose of the Hanning window is
to remove the effect of discontinuities at the joints, and hence the Han-
ning weighting should be used for analysis of continuous signals, or
more generally: for analysis of signals which are longer than the time
window and therefore can cause discontinuities.

Of course, this situation is not special for FFT analysers. The same ar-

" Selected
Time or Fraquency

Over-  Full Scale | F.8. Frequency  Recordsa.T. No. of Spectra = Selected
doad Lavel 10 — 20000Hz 0099 11024 Line

Fig.8. FFT analysis of sinusoidal signal with half-integer number of
periods in memory and varying phase. The spectra show the Ii-
mits for the oscillating wings, using the flat window
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guments apply to Time Compression Analysers and to analog analysis
of signals recorded on a magnetic tape loop. Only the way the effect
shows up is more pronounced with FFT analysers. If, e.g. the signal of
Fig.7b and ¢ were analysed with a phase changing with time, i.e. with-
out any synchronisation between the signal and the recording of it, the
use of the flat window would result in a spectrum where the “wings”
would move up and down with time, maybe giving associations of a
“"Hawaian hula dance”. In Fig.8 is shown the limits of these wing-oscil-
lations, by superposition of the two extreme cases.

But the Flat weighting function - when should it be used? The answer
is: for transient signals which can be completely contained within the
time window. In this case the signal itself starts and stops at zero, and
there will be no discontinuities when it is repeated in time. So there is
no need for a Hanning window. But more important, if the Hanning win-
dow was used it would give different weighting to different parts of the
transient and therefore result in a wrong analysis. This is illustrated in
Fig.9, where a transient signal - being just one period of a sinusoid - is
analysed at different positions within the time window. Using the Flat
window we obtain the correct analysis, which is independent of the po-
sition — as it should be (the difference between the two spectra is
caused by different averaging —over 1 and 64 individual spectra respec-
tively). This is not the case when the Hanning window is used. In
Fig.9a the transient is situated in the beginning of the time window
where the Hanning weighting gives a high attenuation, which also
changes over the length of the signal. Accordingly, the spectrum has
too low amplitudes and is somewhat distorted. Linear averaging over
64 spectra was used in this case to decrease the influence of noise.
Fig.9b shows the situation where the signal is situated at the centre of
the Hanning window. Since the weighting function is rather flat here,
only little distortion might be introduced, but the amplitudes are now
~6dB too high. As mentioned previously, this is due to the amplitude
of the Hanning window being 2 at its centre.

It should be mentioned that transient analysis is normally done in
terms of energy or energy density. However, the spectra produced by
FFT analysers are power spectra, since they are analyses of periodic sig-
nals. In order to convert from power to energy units it is therefore ne-
cessary to multiply with the length of the time window, being the repeti-
tion time of the periodic signal.

Since FFT analysers perform the analysis on blocks of time data this
makes them extremely well suited for the analysis of transients. The
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only problem involved is the capture of the signal within the time win-
dow. However, since the FFT technique is purely digital it is rather sim-
ple to provide the analyser with transient recording facilities, like a trig-
ger function - as found on oscilloscopes - but also with an adjustable
delay between the trigger point and the recording. It is interesting that
even negative delays, i.e. pre-trigger recording, can also be achieved.
In this way FFT analysers are extremely easy to operate with respect to
transient analysis.

To make a very short conclusion of this rather long discussion:
Hanning weighting is for long continuous signals.

Flat weighting is for short transients.

The FFT algorithm

It was mentioned in the beginning of this paper that FFT analysers
worked on the basis of the Discrete Fourier Transform, but calculated
this in a very efficient way by use of the Fast Fourier Transform, the
FFT-algorithm. Hence, FFT is not a Fourier transform in itself, but
merely a calculation scheme. From an application point of view it is of
little interest to know how the spectra are calculated, with or without
FFT, since the results are the same. Actually the use of the FFT algor-
ithm only influences one specification of an analyser - its real-time per-
formance - since this will depend directly on the calculation time.

We shall therefore only discuss the FFT-algorithm very briefly.
The Discrete Fourier Transform takes the form shown in Fig.1d:

2ﬂkn

N—
G(k) =—l1\l— z g(n) - N

This equation can be written as a matrix equation:

(Ao {3

z|-

{Gk} =

where {G, } and {g, } are column vectors containing the N frequency
samples and the N time samples, respectively. {A kn} is a square ma-
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. . . —j2mkn/N
trix of order N containing the complex unit vectors, e

For the particular case of N = 8 the matrix equation may be visualised
as follows:

—Go- [ 1 1 1 1 1 ) ) 90-

G A VN VA T N | o real
G, - | <« 1 - | <o

Gs[_1 N 2N s v |lgs .

G,| 8 A T A | A imag

Gg v - =~ | 2 <« N1{lgs

Gg <« | > 1 <« | -9

| G i N e Y ol N s 2 97 |

Each of the arrows in the matrix represents a complex unit vector, rela-
tive to the axes shown.lIt is seen that a direct calculation of this matrix
equation would require N2 complex multiplications, and when consider-
ing calculation time, multiplications are the most time consuming opera-
tions. Using the FFT algorithm the number of multiplications can be re-
duced to Nlog, N, assuming N is a power of two. In the typical case of
N = 1024, the reduction in calculation time is more than 100.

The savings of the FFT algorithm result from a factorisation of the ma-
trix into a number (log, N) of matrices. Actually it is not the matrix {A}
which is factorised but a different version of it, matrix B} shown in
Fig.10. {B} is derived directly from {A} by interchanging rows with so-
called ’‘bit-reversed” numbers, also indicated in Fig.10. It can be
shown that the matrix {B} can be factorised into the three (log, 8 = 3)
matrices {X}, {Y} and {Z} also shown in Fig.10. It is a common pro-
perty of these three matrices that each row only contains two factors
different from zero, one of which is always unity. Hence multiplication
with one of these matrices requires only N multiplications, one for each
row. Multiplying all the matrices thus requires N log; N multiplications.
Due to the interchange of rows in {B} the final result will contain the
frequency components in the interchanged positions. However, putting
the components back in their correct positions is a very fast procedure
compared to the matrix multiplications.

But it is possible to speed up the calculations even further. Notice that
in matrix {Z} rows separated by 4 rows are identical except for a
change of sign of the non-unity factor. Hence, such two rows can be
calculated using only one multiplication, by changing an addition to a
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Fig.10. Factorisation of matrix B used in the FFT algorithm.

(B} = (X - (Y {2}

subtraction. In {X} and {Y} the separations between these nearly iden-
tical rows are 1 and 2 respectively. In this way an additional factor of
two can be saved in calculation time. Also, since the time signal to be
transformed is normally a real function while {g) vector is complex, a
more efficient transform can be made by packing the N-point real time
signal into a N/2-point complex signal. Hence an N-point transform
can be performed using only a N/2-point calculation. Of course, such a
mixing up of the time signal will require some additional calculations af-
ter the transform to obtain the frequency spectrum of original signal.
However, time is still saved.
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Fig.11. Time chart showing time used for recording and analysis of sig-
nals in FFT analysers

The calculation time has direct influence on the real time performance
of an FFT analyser. This is shown in Fig.11. In order to obtain real-time
analysis, all of the time signal should be analysed, without any loss of
data. Since the analyser first records a block of time data and then per-
forms the analysis of this block, it is necessary to work with two time
memories. While calculations are performed on the data in one me-
mory, further time data can be recorded in the other. It is obvious that
in order not to lose any time data the time used for recording must be
larger than the time used for the analysis. The recording time depends
on the frequency range, i.e. on the sampling frequency, since the num-
ber of time samples in the memory is constant. Hence, there will exist
an upper frequency limit above which the analysis cannot be performed
in real time. This real-time frequency will in practice be determined by
the speed of the electronic circuits used in the design, and will there-
fore directly influence the cost of the analyser. It is therefore of import-
ance to determine whether a specific measurement requires real-time
performance or not. A thorough discussion of this subject will be found
in reference [5].

Conclusions

The advantages of FFT analysers are many: very good linearity of both
frequency and amplitude, large dynamic range, extreme stability, easy
analysis of transients, linear averaging, reference memories, spectrum
comparisons, etc. etc. Furthermore, they are easy to connect to other
types of digital equipment, such as calculators, allowing for a further
treatment of the data - even automatic analysis procedures can be con-
trolled easily.
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So the FFT analyser is a very flexible instrument, but still easy to oper-
ate. It will deliver analysis results with a speed of several spectra per
second, results which are reliable and can be reproduced. However,
there are a few pitfalls. But these can easily be avoided when one
knows the assumptions on which the Discrete Fourier Transform works
and the approximations involved.
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News from the Factory

Two-Channel Level Recorder Type 2309

Graphic recording in the field as well as in the laboratory is an invalu-
able means for providing a hard copy for immediate documentation of
the measured results. The Two Channel Recorder Type 2309 is a por-
table, battery operated, compact instrument for plotting two varying par-
ameters simultaneously with respect to a third, for example, time, fre-
quency, or r.p.m.

Each channel of the 2309 has four switch-selected recording modes:
“AC Log”, "DC Log"”, “"—DC Lin"”, "+DC Lin" and a ""Stand by”" mode
where the signal to the writing system is switched off. In the “AC Log"”
mode it records the RMS value of any waveform in the frequency range
1,6 Hz to 20kHz within an accuracy of 0,5 dB for signals with crest
factors up to 3. In the "DC Log”’, "—DC Lin” and "+DC Lin"" modes the
signal from the range potentiometer is fed through a 500 Hz electronic
chopper before it enters the RMS rectifier circuit. In the DC Lin modes
the writing system is able to follow a sinusoidal signal with a maximum
frequency of 1,6 Hz with maximum deflection and at the fastest writing
speed.
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The dynamic range of the Level Recorder is determined by the inter-
changeable logarithmic potentiometer of 25dB or 50dB supplied for
both the channels. In the Lin recording mode an antilogarithmic ampli-
fier is inserted in the signal path just before the range potentiometer.

Each channel has four writing speeds, 16, 40, 100 and 250 mm/s
corresponding to lower frequency limits of 1,6, 4, 10 and 25 Hz. Re-
cordings are made on 50 mm wide preprinted frequency-calibrated
paper as a function of frequency or on lined paper as function of time
or other parameter. Eight switch-selected paper speeds from
0.01 mm/s to 30 mm/s are available and the start and stop of the
paper drive can be remotely controlled. Additionally, the recorder has a
wide range of facilities for filter, generator, and analyzer synchroniza-
tion and external control and synchronization of the paper movement.

The power for driving the recorder is delivered from dry cells or re-
chargeable NiCd-cells mounted in a plug-in battery box, from mains via
the optional plug-in Power Supply Type 2808 or from an ordinary au-
tomobile battery. A built-in miniature meter on the front panel is also
provided for monitoring the supply voltage.

Among the numerous applications of the instrument are recording of
phase and distortion responses of stereo equipment; phase and ampli-
tude responses of filters, amplifiers etc.; sound insulation of building
elements with respect to frequency; excitation force and vibration re-
sponse as a function of frequency for mechanical structures; and vibra-
tion levels and other parameters as a function of machinery rotation
speed.

Bump Recorder Type 2503

Goods items during transport are often exposed to higher shock levels
than they are designed to withstand. By monitoring the severity of
shocks with respect to time using a Bump Recorder Type 2503, it is
possible to estimate whether damage is likely to have taken place dur-
ing transport and to indicate where the responsibility lies from the time
of occurrence.

The shocks are picked up by a triaxial accelerometer which can be
mounted either inside the recorder case or on a critical part of the trans-
ported item. The accelerations are monitored in three mutually perpend-
icular directions so that shocks occurring in any random direction are
resolved into three vectors. These are combined in the 2503 to repres-
ent the magnitude of the applied shock.

27



A “Recording Threshold” control is provided to limit the data print out
to shock events which have a severity approaching an estimated seri-
ous level. The print-out is only activated when this level, which can be
preset between 10 and 100m/s2 (1 — 100g), is exceeded. Bump data
is recorded on a 6 mm wide paper strip, first the day, hour and minute
of occurrence then the maximum velocity and acceleration levels. Built-
in rechargéable batteries power the instrument for approximately 18
days, for longer journeys an external battery pack can be connected.

In the design and development of packaging, the Bump Recorder will
‘provide valuable data by measuring the shock levels experienced by a
product inside a container under various drop conditions.

By using a low g accelerometer Type 8306 with the 2503, shock levels
as low as 0,01 m/s2 (0,001 g) or 0,3 mm/s can be recorded. The abil-
ity to record such low levels enables the Bump Recorder to be used for
monitoring ground vibrations due to heavy traffic, explosive detona-
tions, pile driving, seismic activity etc.
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